

A Dual Prompt Learning Framework for Few-Shot Dialogue State Tracking

Yuting Yang Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese

Academy of Sciences Beijing, China yangyuting@ict.ac.cn

Juan Cao

Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences Beijing, China caojuan@ict.ac.cn Wenqiang Lei Sichuan University Sichuan, China

wenqianglei@gmail.com

Jintao Li

Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences Beijing, China jtli@ict.ac.cn Pei Huang Stanford University

Stanford University California, USA huangpei@stanford.edu

Tat-Seng Chua
National University of Singapore
Singapore
dcscts@nus.edu.sg

https://github.com/YANG-Yuting/DPL

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

DST aims to extract dialogue states pairs (slot,value),for each user's utterance.

A slot describes an attribute about the user's need.

value is the value of the given attribute.

Dialogues

A₁: Good Morning. What can I help you?

 U_1 : I want a **cheap** hotel.

 A_2 : okay, what day would you like your booking for ?

 U_2 : please book it for <u>Wednesday</u> for <u>5</u> people.

DST

Dialogue states: (slot = value, ...)

 U_1 : price range = cheap

 U_2 : book people = 5, book day = Wednesday

• •

Introduction

Prompt Learning, which aims to utilize pre-trained language models more effectively with the help of prompt, is a new NLP paradigm.

I love this movie

I love this movie. Overall, it was a [Z] movie

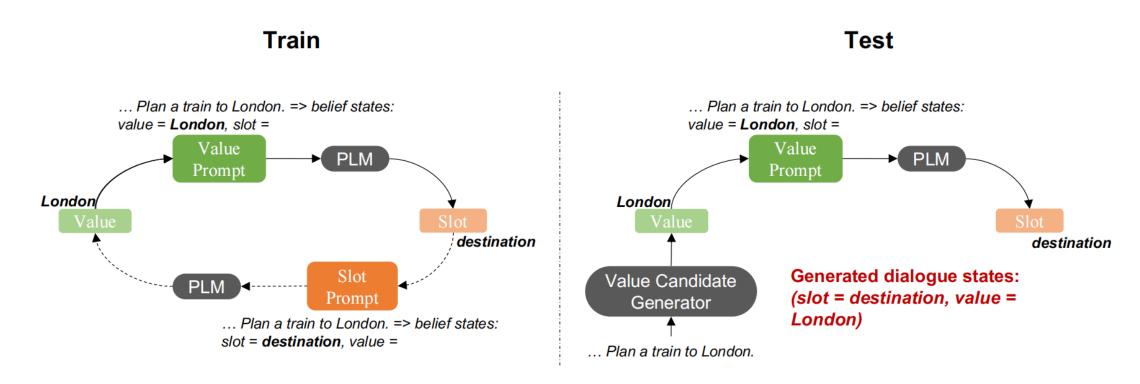


Figure 2: Overview of the dual prompt learning framework for few-shot DST. While training, two dual prompts are constructed: value prompt and slot prompt. Value prompt is constructed with a value and given to the PLM to generate corresponding slots. Slot prompt is constructed with slots and used to generate values. While testing, value candidates are first generated by a pre-trained value candidate generator, and then used to construct value prompts and generate slots.

$$P(y \mid f(x))$$

(1) "I missed the bus today" "I felt so __",

$$P(B_t \mid c_t)$$

(2)
$$c_t = \{a_1, u_1, ..., a_t, u_t\}$$

$$(B_t = \{(s_1, v_1), ...(s_n, v_n)\}$$
"...Plan a train to London on this Tuesday"
$$B_t = \{(destination, London), (day, this Tuesday)\}$$

$$P\left(s\mid f(c,v)\right)\tag{3}$$

$$\mathcal{L}_{v} = -\sum_{i}^{|D|} \log P\left(s_{i} \mid f(c_{i}, v_{i})\right) \tag{4}$$

$$\mathcal{L}_{s} = -\sum_{i}^{|D|} log P(v_{i} \mid I(c_{i}, s_{i}))$$
 (5)

$$\mathcal{L} = \mathcal{L}_v + w * \mathcal{L}_s \tag{6}$$

$$f(c,v) = "[c] belief states: value = London, slot = [s]$$

"[c] belief states:
$$[s] = [v]$$
"

$$\mathcal{L}_r = -\sum_{i}^{|D|} R(v_i) * log P(v_i)$$
 (7)

$$\mathcal{L}'' = \lambda \mathcal{L}' + (1 - \lambda) \mathcal{L}_r \tag{8}$$

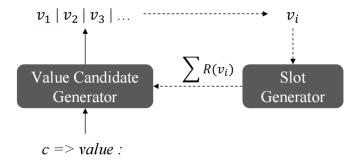


Figure 3: The process of value candidate generation. Dashed lines denote the tuning process: The slot generator accepts the generated value v_i to construct the value prompt and then feeds it into the fine-tuned PLM to generate slots and get reward for tuning the value candidate generator.

$$P(s_i) = \sum_{k}^{K} \alpha_k * P(s_i \mid f_k(c_i, v_i))$$
(9)

```
Prompt Functions

f_1 [c] belief states: value = [v], slot = [s]

f_2 [c] belief states: [v] = [s]

f_3 [c] [v] is the value of [s]

f_4 [c] What is the slot type of [v]? [s]
```

Table 1: Different value prompt functions. [c] is the dialogue history. [v] is the input of value candidate and [s] is the slot to be generated.

	1%	5%	10%	20%	25%					
Need slot ontology										
TRADE	9.7	29.4	34.1	N/A	41.4					
Self-Sup	20.4	33.7	37.2	N/A	42.7					
TOD-BERT	10.3	27.8	38.8	N/A	44.3					
No need for slot ontology										
SimpleTOD	7.9	16.1	22.4	31.2	N/A					
MinTL	9.3	21.3	30.3	36.0	N/A					
SOLOIST	13.2	26.5	32.4	38.7	N/A					
PPTOD	29.7	40.2	43.5	47.0	N/A					
DPL	33.7	42.1	45.6	49.5	51.2					

Table 2: Few-shot experimental results on MultiWOZ 2.0.

slots
$area^{123}$, $arrive\ by^{45}$, day^{235} , $departure^{45}$, $destination^{45}$, $food^3$,
$internet^2$, $leave^{45}$, $name^{123}$, $people^{235}$, $parking^2$, $price^{23}$,
$stars^2$, $stay^2$, $time^3$, $type^{12}$

Table 3: All slots in MultiWOZ 2.1. The upper script on slot indicates the domain it belongs to (1: Attraction, 2: Hotel, 3: Restaurant, 4: Taxi, 5: Train).

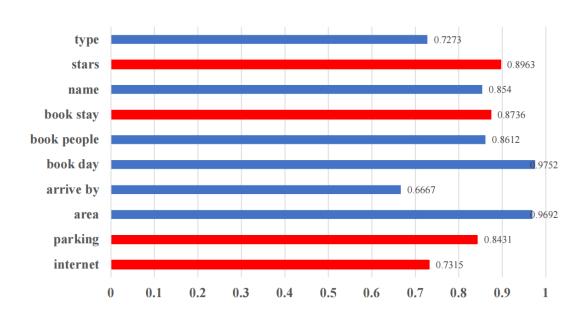


Figure 4: Slot accuracy of each slot in Hotel domain under zero-shot settings. X-axis is the slot accuracy and y-axis is the slot. Red bars mark unseen slots.

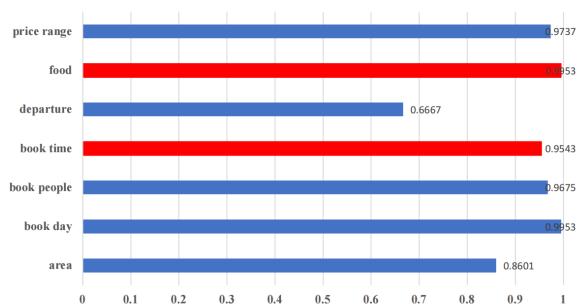


Figure 5: Slot accuracy of each slot in Restaurant.

Model	Attraction		Hotel		Restaurant		Taxi			Train					
Model	1%	5%	10%	1%	5%	10%	1%	5%	10%	1%	5%	10%	1%	5%	10%
TRADE	35.8	57.5	63.1	19.7	37.4	41.4	42.4	55.7	60.9	63.8	66.5	70.1	59.8	69.2	71.1
DSTQA	N/A	70.5	71.6	N/A	50.2	53.7	N/A	59.0	64.5	N/A	70.9	74.2	N/A	70.4	74.5
T5DST	58.8	65.7	69.5	43.1	50.7	54.9	57.6	61.9	63.5	70.1	73.7	74.7	70.8	74.2	77.6
DPL	60.4	70.5	72.1	45.7	53.1	56.9	60.5	64.3	67.2	74.1	76.4	77.8	72.1	76.3	79.0

Table 4: Few-shot cross-domain experimental results on MultiWOZ 2.0.

rule	32.65						
	1%	5%	10%	25%			
Ours	51.42	59.22	63.11	65.17			
Ours w/o tuning	47.58	55.93	61.57	65.03			

Table 5: Turn-level accuracy on test set of value generator under different ratios of training data. "w/o tuning" means removing the process of using the output of slot generation to tune the process of value generation.

Dialogue history: ... [user] no , i do not care where it is . i like

3 stars and i absolutely need free wifi.

Gold values: don't care, 3, yes

Generated values: don't care, 3, yes

Table 6: A test instance whose values are generated by the trained value generator with 25% training data. It shows that the value generator can generate implicit values ("yes").

	f_1	f_2	f_3	f_4	En
DPL	25.7	29.4	26.4	28.9	33.7
DPL w/o slot prompt	20.1	29.1	22.3	24.5	29.5

Table 7: JGA results for our models trained with 1% data given different prompt functions (from f_1 to f_4). "w/o slot prompt" means removing the training process of slot prompt. "En" shows the result of the ensemble of models trained on different prompt functions with and without slot prompt.

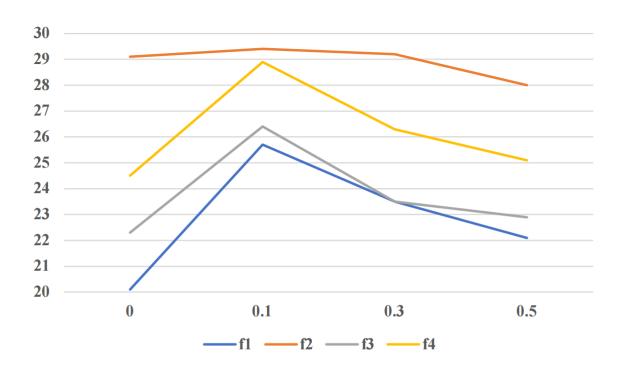


Figure 6: The influence of weight w for slot prompt using different prompt functions f. X-axis is the value of w and y-axis is JGA. Experiments with w=0.1 always perform best for all prompt functions.

Thank you!